Deep Concatenated Residual Network With Bidirectional LSTM for One Hour Ahead Wind Power Forecasting
Rs6,000.00
10000 in stock
SupportDescription
This paper presents a deep residual network for improving time-series forecasting models, indispensable to reliable and economical power grid operations, especially with high shares of renewable energy sources. Motivated by the potential performance degradation due to the overfitting of the prevailing stacked bidirectional long short-term memory (Bi-LSTM) layers associated with its linear stacking, we propose a concatenated residual learning by connecting the multi-level residual network (MRN) and DenseNet. This method further integrates long and short Bi-LSTM networks, ReLU, and SeLU for its activating function. Rigorous studies present superior prediction accuracy and parameter efficiency for the widely used temperature dataset as well as the actual wind power dataset. The peak value forecasting and generalization capability, along with the credible confidence range, demonstrate that the proposed model offers essential features of a time-series forecasting, enabling a general forecasting framework in grid operations. The source code of this paper can be found in https://github.com/MinseungKo/DRNet.git.
Only logged in customers who have purchased this product may leave a review.
Reviews
There are no reviews yet.