Preserving Clinical Decision Support System using Gaussian Kernel based Classification
Rs3,000.00
10000 in stock
SupportDescription
Abstract
A clinical decision support system forms a critical capability to link health observations with health knowledge to influence choices by clinicians for improved healthcare. Recent trends towards remote outsourcing can be exploited to provide efficient and accurate clinical decision support in healthcare. In this scenario, clinicians can use the health knowledge located in remote servers via the Internet to diagnose their patients. However, the fact that these servers are third party and therefore potentially not fully trusted raises possible privacy concerns. In this paper, we propose a novel privacy-preserving protocol for a clinical decision support system where the patients’ data always remain in encrypted form during the diagnosis process. Hence the server involved in the diagnosis process is not able to learn any extra knowledge about the patient data and results. Our experimental results on popular medical data sets from UCI database demonstrate that the accuracy of the proposed protocol is up to 97.21% and the privacy of patient data is not compromised.
Only logged in customers who have purchased this product may leave a review.
Reviews
There are no reviews yet.