Description
ABSTRACT
To introduce the problem of k-pattern set mining, concerned with finding a set of k related patterns under constraints. This contrasts to regular pattern mining, where one searches for many individual patterns. The k-pattern set mining problem is a very general problem that can be instantiated to a wide variety of well-known mining tasks including concept-learning, rule-learning, red escription mining, conceptual clustering and tiling. To this end, we formulate a large number of constraints for use in k-pattern set mining, both at the local level, that is, on individual patterns, and on the global level, that is, on the overall pattern set. Building general solvers for the pattern set mining problem remains a challenge. Here, we investigate to what extent constraint programming (CP) can be used as a general solution strategy. We present a mapping of pattern set constraints to constraints currently available in CP. This allows us to investigate a large number of settings within a unified framework and to gain insight in the possibilities and limitations of these solvers. This is important as it allows us to create guidelines in how to model new problems successfully and how to model existing problems more efficiently. It also opens up the way for other solver technologies
Only logged in customers who have purchased this product may leave a review.
Reviews
There are no reviews yet.