Influence Maximization in Trajectory Databases-JAVA
Rs4,500.00
10000 in stock
SupportDescription
Novel problem of influence maximization in trajectory databases that is very useful in precise location-aware advertising. It finds kbest trajectories to be attached with a given advertisement and maximizes the expected influence among a large group of audience. We show that the problem is NP-hard and propose both exact and approximate solutions to find thebest set of trajectories. In the exact solution, we devise an expansion-based framework that enumerates trajectory combinations in a best-first manner and propose three types of upper bound estimation techniques to facilitate early termination. In addition, we propose a novel trajectory index to reduce the influence calculation cost. To support largek, we propose a greedy solution with an approximation ratio of (1-1/e), whose performance is further optimized by a new proposed cluster-based method. We also propose a threshold method that can support any approximation ratio 2(0;1]. In addition, we extend our problem to support the scenario when there are a group of advertisements. In our experiments, we use real datasets to construct user profiles, motion patterns and trajectory databases. The experimental results verified the efficiency of our proposed methods
Only logged in customers who have purchased this product may leave a review.
Reviews
There are no reviews yet.