Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques
Rs2,500.00
10000 in stock
SupportDescription
Recommender systems are becoming increasingly important to individual users and businesses for providing personalized recommendations. However, while the majority of algorithms proposed in recommender systems literature have focused on improving recommendation accuracy, other important aspects of recommendation quality, such as the diversity of recommendations, have often been overlooked. In this paper, we introduce and explore a number of item ranking techniques that can generate recommendations that have substantially higher aggregate diversity across all users while maintaining comparable levels of recommendation accuracy. Comprehensive empirical evaluation consistently shows the diversity gains of the proposed techniques using several real-world rating datasets and different rating prediction algorithms. The most common formulation of the recommendation problem relies on the notion of ratings, i.e., recommender systems estimate ratings of items (or products) that are yet to be consumed by users, based on the ratings of items already consumed. Recommender systems typically try to predict the ratings of unknown items for each user, often using other users’ ratings, and recommend top N items with the highest predicted ratings. Accordingly, there have been many studies on developing new algorithms that can improve the predictive accuracy of recommendations. However, the quality of recommendations can be evaluated along a number of dimensions, and relying on the accuracy of recommendations alone may not be enough to find the most relevant items for each user . In particular, the importance of diverse recommendations has been previously emphasized in several studies.These studies argue that one of the goals of recommender systems is to provide a user with highly idiosyncratic or personalized items, and more diverse recommendations result in more opportunities for users to get recommended such items. With this motivation, some studies proposed new recommendation methods that can increase the diversity of recommendation sets for a given individual user, often measured by an average dissimilarity between all pairs of recommended items, while maintaining an acceptable level of accuracy. These studies measure recommendation diversity from an individual user’s perspective.
Only logged in customers who have purchased this product may leave a review.
Reviews
There are no reviews yet.