Improved-churn-prediction-in-telecommunication-industry-using-data-mining-techniques
US$52.67
10000 in stock
SupportDescription
Many data mining techniques have been proposed for mining useful patterns in text documents. However, how to effectively use and update discovered patterns is still an open research issue, especially in the domain of text mining. Since most existing text mining methods adopted term-based approaches, they all suffer from the problems of polysemy and synonymy. This system proposes an innovative technique for finding and classifying low-level terms based on both their appearances in the higher-level features and their specificity in a training set. To survive in today’s telecommunication business it is imperative to distinguish customers who are not reluctant to move toward a competitor. Therefore, customer churn prediction has become an essential issue in telecommunication business. In such competitive business a reliable customer predictor will be regarded priceless. This paper has employed data mining classification techniques including Decision Tree, Artificial Neural Networks, K-Nearest Neighbors, and Support Vector Machine so as to compare their performances. Using the data of an Iranian mobile company, not only were these techniques experienced and compared to one another, but also we have drawn a parallel between some different prominent data mining software. Analyzing the techniques’ behavior and coming to know their specialties, we proposed a hybrid methodology which made considerable improvements to the value of some of the evaluations metrics. The proposed methodology results showed that above 95% accuracy for Recall and Precision is easily achievable. Apart from that a new methodology for extracting influential features in dataset was introduced and experienced.
Only logged in customers who have purchased this product may leave a review.
Reviews
There are no reviews yet.