Image Classification by Selective Regularized Subspace Learning
Our Price
₹3,500.00
10000 in stock
Support
Ready to Ship
Description
Feature learning is an intensively studied research topic in image classification .Although existing methods like sparse coding ,locality – constrained linear coding ,fisher vector encoding, etc., have shown their effectiveness in image representation, most of them overlook a phenomenon called the small sample size problem, where the number of training samples is relatively smaller than the dimensionality of the features, which may limit the predictive power of the classifier. Subspace learning is a strategy to mitigate this problem by reducing the dimensionality of the features. However, most conventional subspace learning methods attempt to learn a global subspace to discriminate all the classes ,which proves to be difficult and ineffective in multi-class classification task. To this end, we propose to learn a local subspace for each sample instead of learning a global subspace for all samples. Our key observation is that , in multi-class image classification, the label of each testing sample is only confused by a few classes which have very similar visual appearance to it. Thus, in this work, we propose a coarse-to-fine strategy, which first picks out such classes, and then conducts a local subspace learning to discriminate them .As the subspace learning method is regularized and conducted with in some selected classes, we term it selective regularized subspace learning (SRSL), and we term our classification pipeline selective regularized subspace learning based multi-class image classification(SRSL_MIC).
Image Classification by Selective Regularized Subspace Learning