Computing Spatial Distance Histograms for Large Scientific Datasets On-the-Fly
Rs3,000.00
10000 in stock
SupportDescription
Computing Spatial Distance Histograms for Large Scientific Datasets On-the-Fly. This paper focuses on an important query in scientific simulation data analysis: the Spatial Distance Histogram (SDH). The computation time of an SDH query using brute force method is quadratic. Often, such queries are executed continuously over certain time periods, < Final Year Projects > increasing the computation time. We propose highly efficient approximate algorithm to compute SDH over consecutive time periods with provable error bounds. The key idea of our algorithm is to derive statistical distribution of distances from the spatial and temporal characteristics of particles. Upon organizing the data into a Quad-tree based structure, the spatiotemporal characteristics of particles in each node of the tree are acquired to determine the particles’ spatial distribution as well as their temporal locality in consecutive time periods. We report our efforts in implementing and optimizing the above algorithm in graphics processing units (GPUs) as means to further improve the efficiency. The accuracy and efficiency of the proposed algorithm is backed by mathematical analysis and results of extensive experiments using data generated from real simulation studies.
Only logged in customers who have purchased this product may leave a review.
Reviews
There are no reviews yet.