A predictive model for cerebrovascular disease using data mining
Our Price
₹2,500.00
10000 in stock
Support
Ready to Ship
Description
Cerebrovascular disease has been ranked the second or third of top 10 death causes in Taiwan and has caused about 13,000 people death every year since 1986. Once cerebrovascular disease occurs, it not only leads to huge cost of medical care, but even death. All developed countries in the world put cerebrovascular disease prevention and treatment in high priority, and invested considerable budget and human resource in long-term studies, in order to reduce the heavy burden. As the pathogenesis of cerebrovascular disease is complex and variable, it is hard to make accurate diagnosis in advance. However, in perspective of preventive medicine, it is necessary to build a predictive model to enhance the accurate diagnosis of cerebrovascular disease. Therefore, coupled with the 2007 cerebrovascular disease prevention and treatment program of a regional teaching hospital in Taiwan, this study aimed to apply the classification technology to construct an optimum cerebrovascular disease predictive model. From this predictive model, cerebrovascular disease classification rules were extracted and used to improve the diagnosis and prediction of cerebrovascular disease
Tags: 2012, Data Mining Projects, Java


