Epileptic Seizure Prediction Based on Multivariate Statistical Process Control of Heart Rate Variability Features
Objective: The present study proposes a new epileptic seizure prediction method through integrating heart rate variability (HRV) analysis and an anomaly monitoring technique. Methods: Because excessive neuronal activities in the preictal period of epilepsy affect the autonomic nervous systems and autonomic nervous function affects HRV, it is assumed that a seizure can be predicted through monitoring HRV. In the proposed method, eight HRV features are monitored for predicting seizures by using multivariate statistical process control, which is a well-known anomaly monitoring method.
ClickMyProject Specifications
|
|
|
Including Packages
|
|
Specialization
|
|
|
* Supporting Softwares |
|
* 24/7 Support |
|
* Complete Source Code |
|
* Ticketing System |
|
* Complete Documentation |
|
* Voice Conference |
|
* Complete Presentation Slides |
|
* Video On Demand * |
|
* Flow Diagram |
|
* Remote Connectivity * |
|
* Database File |
|
* Code Customization ** |
|
* Screenshots |
|
* Document Customization ** |
|
* Execution Procedure |
|
* Live Chat Support |
|
* Readme File |
|
* Toll Free Support * |
|
* Addons |
|
|
|
* Video Tutorials |
|
|
|
|
|
|
|
*- PremiumSupport Service (Based on Service Hours) ** - Premium Development Service (Based on Requirements) |

|
This product was added to our catalog on Saturday 17 June, 2017.