A new ECG beat clustering method based on kernelized fuzzy c-means and hybrid ant colony optimization for continuous domains
Brand: | Biomed Hut |
Product Code: | PROJ742 |
Availability: | In Stock |
-
2,500.00INR
The kernelized fuzzy c-means algorithm uses kernel methods to improve the clustering performance of the well known fuzzy c-means algorithm by mapping a given dataset into a higher dimensional space non-linearly. Thus, the newly obtained dataset is more likely to be linearly seprable. However, to further improve the clustering performance, an optimization method is required to overcome the drawbacks of the traditional algorithms such as, sensitivity to initialization, trapping into local minima and lack of prior knowledge for optimum paramaters of the kernel functions. In this paper, to overcome these drawbacks, a new clustering method based on kernelized fuzzy c-means algorithm and a recently proposed ant based optimization algorithm, hybrid ant colony optimization for continuous domains, is proposed. The proposed method is applied to a dataset which is obtained from MIT–BIH arrhythmia database. The dataset consists of six types of ECG beats including, Normal Beat (N), Premature Ventricular Contraction (PVC), Fusion of Ventricular and Normal Beat (F), Artrial Premature Beat (A), Right Bundle Branch Block Beat (R) and Fusion of Paced and Normal Beat (f). Four time domain features are extracted for each beat type and training and test sets are formed. After several experiments it is observed that the proposed method outperforms the traditional fuzzy c-means and kernelized fuzzy c-means algorithms.
Our Specialization |
PremiumSupport Service |
Premium Development Service |
---|---|---|
Voice Conference | Video On Demand | Code Customization |
24/7 Support | Remote Connectivity | Document Customization |
Ticketing System | Project on Demand | Zoom/Google Meet Explanation |
Live Chat Support | Single Point of Contact(SPOC) | Whatsapp Support |
OUR HIGHLIGHTS
Discover our highlights here! Our highlights provide accurate data to evaluate our standard. We provide an overview of our services which exhibits the following qualities. When it comes to quality, we at ClickMyProject believe in helping our clients to gives you the best-in-class services.
23+
Years of Experience
20+
Specialized Domains
7.5L+
Projects Reached
99.9%
Customer Satisfied


