A Multi Kernel Mode Using a Local Binary Pattern and Random Patch Convolution for Hyperspectral Image Classification
Rs6,000.00
10000 in stock
SupportDescription
With the development of deep learning technology, more and more scholars have applied it to hyperspectral image (HSI) classification to improve classification accuracy. However, these deep-learning methods not only take a lot of time in the pre-training phase, but also have relatively limited classification performance when there are fewer labeled samples. In order to improve classification performance while reducing costs, this article proposes a multikernel method based on a local binary pattern and random patches (LBPRP-MK), which integrates a local binary pattern (LBP) and deep learning into a multiple-kernel framework. First, we use LBP and hierarchical convolutional neural networks to extract local textural features and multilayer convolutional features, respectively. The convolution kernel for the convolution operation is obtained from the original image using a random strategy without training. Then, we input local textural features, multilayer convolutional features, and spectral features obtained from the original image into the radial basis function to obtain three kernel functions. Finally, the three kernel functions are merged into a multikernel function according to their optimal weights under the composite kernel strategy. This multikernel function is used as the input for the support vector machine to obtain the classification result map. Experiments show that compared with other HSI classification methods, the proposed method achieves better classification performance on three HSI datasets.
Only logged in customers who have purchased this product may leave a review.
Reviews
There are no reviews yet.