LiveZilla Live Chat Software
Warning STRICT ERROR REPORTING IS ON
Toward Optimal Feature Selection in Naive Bayes for Text Categorization

Toward Optimal Feature Selection in Naive Bayes for Text Categorization

Starting at: Rs.5,500.00

5500 reward points

 Toward Optimal Feature Selection in Naive Bayes for Text Categorization

 Automated feature selection is important for text categorization to reduce the feature size and to speed up the learning process of classifiers. In this paper, we present a novel and efficient feature selection framework based on the Information Theory, which aims to rank the features with their discriminative capacity for classification. We first revisit two information measures: Kullback-Leibler divergence and Jeffreys divergence for binary hypothesis testing, and analyze their asymptotic properties relating to type I and type II errors of a Bayesian classifier. We then introduce a new divergence measure, called Jeffreys-Multi-Hypothesis (JMH) divergence, to measure multi-distribution divergence for multi-class classification.


 


ClickMyProject Specifications
 
 
Including Packages
 
Specialization
 
  * Supporting Softwares   * 24/7 Support
  * Complete Source Code   * Ticketing System
  * Complete Documentation   * Voice Conference
  * Complete Presentation Slides   * Video On Demand *
  * Flow Diagram   * Remote Connectivity *
  * Database File   * Code Customization **
  * Screenshots   * Document Customization **
  * Execution Procedure   * Live Chat Support
  * Readme File   * Toll Free Support *
  * Addons    
  * Video Tutorials    
       
 

*- PremiumSupport Service (Based on Service Hours) ** - Premium Development Service (Based on Requirements)


Add to Cart:

  • Model: PROJ7041
  • 999 Units in Stock
  • Manufactured by: ClickMyProjects

Please Choose:

Downloadable







This product was added to our catalog on Tuesday 30 May, 2017.

  0