K-Means-Based Consensus Clustering: A Unified View
The objective of consensus clustering is to find a single partitioning which agrees as much as possible with existing basic partitionings. Consensus clustering emerges as a promising solution to find cluster structures from heterogeneous data. As an efficient approach for consensus clustering, the K-means based method has garnered attention in the literature, however the existing research efforts are still preliminary and fragmented. To that end, in this paper, we provide a systematic study of K-means-based consensus clustering (KCC). Specifically, we first reveal a necessary and sufficient condition for utility functions which work for KCC. This helps to establish a unified framework for KCC on both complete and incomplete data sets. Also, we investigate some important factors, such as the quality and diversity of basic partitionings, which may affect the performances of KCC. Experimental results on various real-world data sets demonstrate that KCC is highly efficient and is comparable to the state-of-the-art methods in terms of clustering quality. In addition, KCC shows high robustness to incomplete basic partitionings with many missing values.
ClickMyProject Specifications
|
|
|
Including Packages
|
|
Specialization
|
|
|
* Supporting Softwares |
|
* 24/7 Support |
|
* Complete Source Code |
|
* Ticketing System |
|
* Complete Documentation |
|
* Voice Conference |
|
* Complete Presentation Slides |
|
* Video On Demand * |
|
* Flow Diagram |
|
* Remote Connectivity * |
|
* Database File |
|
* Code Customization ** |
|
* Screenshots |
|
* Document Customization ** |
|
* Execution Procedure |
|
* Live Chat Support |
|
* Readme File |
|
* Toll Free Support * |
|
* Addons |
|
|
|
* Video Tutorials |
|
|
|
|
|
|
|
*- PremiumSupport Service (Based on Service Hours) ** - Premium Development Service (Based on Requirements) |

|
This product was added to our catalog on Thursday 15 September, 2016.